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Abstract
We investigate the properties of chiral anomalies in d = 2 in the framework of
constructive quantum field theory. The condition that the gauge propagator
is sufficiently soft in the ultraviolet is essential for the anomaly non-
renormalization; when it is violated, as for contact current–current interactions,
the anomaly is renormalized by higher order corrections. The same conditions
are also essential for the validity, in the massless case of the closed equation
obtained combining Ward identities and Schwinger–Dyson equations; this
solves the apparent contradiction between perturbative computations and exact
analysis.

PACS numbers: 11.10.Kk, 11.30.Rd, 11.10.Gh

1. Introduction

Anomalies are the breaking of certain classical symmetries happening in quantum field theory
(QFT) (see [A, BJ]). A well-known example is in QED4, in which the axial Ward identity
(WI) is

pµ�̂
µ

5 (p, k) = γ 5(Ŝ(k − p))−1 − γ 5(Ŝ(k))−1 + 2im�̂5(p, k) + iαF̂ (p, k), (1.1)

where �
µ

5 (p, k) and �̂5(p, k) are the Fourier transform of
〈
T

(
j 5
µ,zψ̄xψy

)〉
A

and
〈
T

(
j 5

z ψ̄xψy
)〉

A

(A means truncation with respect to the fermion interacting propagator Ŝ(k)), and F̂ (p, k) is
the Fourier transform of εµ,ν,ρ,σ

〈
T

(
Fµ,ν,zFρ,σ,zψ̄xψy

)〉
A

. The last term, which is unexpected
from formal applications of the classical Noether theorem, is the anomaly; it was shown by
Adler [A] that α is exactly quadratic in the charge α = e2

16π2 , that is the anomaly is non-
renormalized by higher order corrections. An accurate derivation of this property, known as
Adler–Bardeen theorem, was given in [AB], in which (1.1) with α = e2

16π2 was proved as a
perturbative order by order identity among formal expansions in Feynman graphs. In most
textbooks, the properties of the anomalies are actually derived following the functional integral
approach in [F], in which however the gauge fields are treated as external classical fields, so
that higher order corrections to the anomaly would be in any case neglected. On the other hand
several objections have been raised against the validity of the anomaly non-renormalization
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along the years, starting from [JJ] (see [A1] for a recent review), so that a non-perturbative
derivation of it would be highly desirable, in view also of the role of such a property in the
proof of renormalizability of the electroweak model. This is actually far from the present
possibilities in d = 4, so that anomalies have been investigated in d = 2, with the hope of
getting results beyond a purely perturbative level and to have insights for the d = 4 case.

In [GR] it was shown by a formal expansion in Feynman graphs that the anomaly non-
renormalization holds also for d = 2 QFT models either for massive gauge or for Thirring
interactions. The advantage of the d = 2 case is that one can use the operatorial exact solutions
to get an ‘explicit verification of the perturbation-theory calculations’. Indeed, following the
analysis in [J], the anomaly non-renormalization appears as a consequence of the validity of
the Ward identities for the total and axial current and of the Schwinger–Dyson equation; such
equations can be combined in a closed equation for the two and four point functions and
from a self-consistency argument the explicit value of the anomalies is obtained, showing the
absence of higher order corrections.

Note that the validity of the anomaly non-renormalization for Thirring interactions does
not follow from the Adler–Bardeen theorem in d = 2, as there the fast decay of the bosonic
propagator plays an essential role. Indeed other perturbative computations [AF] have shown
that in the d = 2 massless Thirring model there are higher orders contribution to the anomaly.
Note also that the question on whether or not one can use exact results to infer properties about
the correlations computed in a functional integral approach is not trivial at all and it was the
subject of extensive debates (see for instance [GL]).

The recent developments in the mathematical analysis of quantum models at low
dimension make it finally possible to investigate the properties of the chiral anomalies at
a non-perturbative level in the framework of constructive QFT. In such an approach, the
Euclidean n-point functions are obtained as the limit of functional integrals suitably regularized
through lattice or momentum cut-offs; Feynman graph expansions are avoided for their bad
combinatorial properties, and cluster expansions are instead used, which allow us to prove the
convergence of the series involved. While a well-known problem in this approach is posed by
the basic conflict between the scale decompositions used in a non-perturbative setting [P, G]
and the local symmetries, the methods recently developed in [BM] overcome such a problem,
at least in d = 2, and allow the rigorous construction of QFT models in d = 2 showing that
the momentum cut-offs can be removed and that the resulting Schwinger functions verify the
axioms. By using such methods it has been rigorously proved in [M, BFM] that the condition
that the gauge propagator is sufficiently soft in the ultraviolet is essential for the anomaly
non-renormalization in a functional integral approach; when it is violated, as for Thirring
current–current interactions, the anomaly is renormalized by higher order corrections. Such
results confirm, at a non-perturbative level, the perturbative analysis in [AB] in which the
decay of the boson propagator plays an essential role; they are however in apparent contrast
with the results based on the exact solutions in which the anomaly non-renormalization seems
not to require such conditions.

In this paper we will explain how to resolve such apparent contradiction, and we finally
clarify the relation between exact analysis and functional approach in d = 2 models. By
combining the WI with the Schwinger–Dyson equation, at finite cut-offs, one does not obtain
a closed equation as there are additional corrections depending on a complicate way from
the cut-offs. We will prove that such corrections are indeed vanishing when the cut-offs
are removed provided that the same conditions ensuring the anomaly non-renormalization
are verified. Such conditions require that the boson propagator decays fast enough for large
momenta, or at least that the boson cut-off is removed after the fermionic one; in purely
fermionic models, it is necessary to start with non-local current–current interactions taking
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the local limit after the removal of the fermionic cut-off. If such conditions are not verified, as
for Thirring contact interactions, the corrections are not vanishing so that the closed equation
postulated by the exact solutions is not verified by the correlations computed from functional
integrals; this solves the apparent contradictions between the functional integral approach and
exact analysis.

The paper is organized in the following way. In section 2 the main results are presented;
in sections 3 and 4 we construct the model and study the anomalies, referring for the complete
proofs, which are quite long and technical, to [M, BFM]. Finally in section 5 we present
some new results, analyzing the corrections deriving the closed equations for the two-point
functions .

2. Main results

2.1. The model

We consider the (Euclidean) d = 2 QFT model whose correlations can be obtained from the
generating function

WK,N(J, φ) = log
∫

PZ2(dψ(�N))P (dA)

× exp

(∫
dx [eZ1ψ̄x(Aµ,xγµ)ψx + Jµ,xAµ,x + φxψ̄x + φ̄xψx]

)
(2.1)

φx, φ̄x, Jµ,x are external fields, Z2 is the fermionic wavefunction renormalizations, Z1 is the
charge renormalization, ψ, ψ̄ are Grassmann variables and PZ2(dψ(�N)) is the Grassmannian
integration with propagator

g(�N)(x − y) = 1

Z2

∫
dp

−i � p + Z4m

p2 + Z2
4m

2
e−ip(x−y)χN(p), (2.2)

where χN(k) is a smooth cut-off function non-vanishing for |k| � 2N+1 and = 1 for |k| �
γ N,N being a positive integer. Finally Aµ,x = (A0,x, A1,x) are Euclidean boson fields with
Gaussian measure P(dA) and the propagator 〈Aµ,xAν,y〉 = δµ,νvK(x − y); if Aµ is a massive
vector field its covariance is

vK(x − y) =
∫

dp
(2π)2

e−ip(x−y) χK(p)

p2 + M2
(2.3)

but we will mostly consider the case

vK(x − y) =
∫

dp
(2π)2

e−ip(x−y)χK(p). (2.4)

The reason is that the theory with propagator (2.4) has a perturbative structure much more
similar to d = 4 gauge models, as it is renormalizable with divergence index is 2 − f

2 − b, if
b, f are the external bosonic and fermionic lines (to be compared with 4 − 3

2f −b for QED4),
while with the choice (2.3) the theory is super-renormalizable and the index is 2 − n − f/2,
if n is the perturbative order.

The truncated Euclidean Schwinger functions are defined as〈
ψx1 . . . ψxn

ψ̄y1 . . . ψ̄yn
Aµ1,z1 . . . Aµm,zm

〉
K,N

= ∂2n+mWK,N(JA, φ)

∂φx1 . . . ∂φxn
∂φ̄y1 . . . ∂φ̄yn

∂JA
µ1,z1

. . . ∂JA
µm,zm

∣∣∣∣∣
0

. (2.5)
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We remark that the Schwinger functions (2.5) cannot be explicitly computed, even when
m = 0, unless some approximation is done, as in [FGS], which is equivalent to treating
the gauge field as a classical field; indeed the model (2.1) is strictly related to certain non-
solvable statistical mechanics models describing d = 2 Ising models coupled by a quartic spin
interaction, see [GM1].

By integrating the boson field a purely fermionic theory is obtained:

eWK,N (J,φ) =
∫

PZ2(dψ(�N)) exp

(
e2

2

∫
dx dyvK(x − y)[Z1eψ̄xγµψx + Jµ,x]

× [Z1eψ̄yγµψy + Jµ,y] +
∫

dx [φxψ̄x + φ̄xψx]

)
. (2.6)

The cut-offs make the functional integral (2.1) well defined; to carry out the renormalization
program at a non-perturbative level we have to prove that it is possible to fix the bare parameters
as functions of the ultraviolet cut-offs so that in the limit K,N → ∞, the Schwinger functions
exist and verify the Osterwalder–Schrader [OS] axioms. Different properties will be found, in
the case (2.4), depending on whether the fermionic or the bosonic cut-off is removed first.

2.2. Removing the fermionic ultraviolet cut-off before the bosonic one

Let us consider first (2.1) with bosonic propagator (2.4) and assume the fermionic cut-off is
removed first; this is equivalent to considering (2.6) assuming that the limit of local current–
current interaction is performed after the removal of the fermionic cut-off.

We will prove that, if e is small enough (uniformly in m), by choosing the bare parameters
as

Z1 = Z2 ≡ Z = γ −ηK, Z4 = γ −η1K (2.7)

with η, η1 being analytic functions of e and η = ae4 + O(e6), η1 = be2 + O(e4), a, b > 0
suitable constants, the limit

lim
K→∞

lim
N→∞

〈
ψx1 . . . ψxn

ψ̄y1 . . . ψ̄yn
Aµ1,z1 . . . Aµm,zm

〉
K,N

(2.8)

exists at non-coinciding points and verifies the axioms.
By a chiral transformation the following axial Ward identity at finite cut-off is obtained

pµ
〈
j 5
µ,pψkψ̄k−p

〉
K,N

= γ 5〈ψk−pψ̄k−p〉K,N − γ 5〈ψkψ̄k〉K,N

+ m
〈
j 5

pψkψ̄k−p
〉
K,N

+ αK,N(p, k)εµ,vipµ〈Aν,pψkψ̄k−p〉K,N (2.9)

with j 5
µ = Z2ψ̄γµγ5ψ, j 5 = Z4ψ̄γ5ψ , and

lim
K→∞

lim
N→∞

αK,N(p, k) = e

2π
. (2.10)

As our results are uniform in the fermionic mass, we can write the Schwinger–Dyson equation
in the massless case m = 0 (Z ≡ Z1)

〈ψkψ̄k〉K,N = χN(k)
−i� k
k2

[
Z−1 − e2

∫
dp

(2π)2
v̂K(p)γµ〈jµ,pψkψ̄k−p〉K,N

]
, (2.11)

which can be combined with the WI (2.9) and its analogy for the current obtaining

〈ψkψ̄k〉K,N = B1,K,N (k) +
χN(k)

Z

−i� k
k2

− e2 [ā1 − a1]

2
χN(k)

(−i� k
k2

) ∫
dp

(2π)2
iv̂K(p)

γµpµ

p2
〈ψk−pψ̄k−p〉K,N , (2.12)
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where a−1
1 = 1 − e2

2π
and ā−1

1 = 1 + e2

2π
, and B1,K,N (k) is a term depending on the integrated

difference between the WI with or without cut-off, and it is such that

lim
K→∞

lim
N→∞

B1,K,N (k) = 0. (2.13)

Finally, as a corollary of the above results, in the case (2.1) with bosonic propagator (2.3)
keeping K finite, the bare parameters must be chosen as N-independent and (2.9), (2.10),
(2.13) hold.

2.3. Removing the bosonic ultraviolet cut-off before the fermionic one

We consider now (2.1) with bosonic propagator (2.4) and we assume that the bosonic cut-off
is removed first; this is equivalent to considering (2.6), assuming that the removal of the
fermionic cut-off is done starting from a local current–current interaction.

If e is small enough (uniformly in m), by choosing the bare parameters as

Z1 = Z2 ≡ Z = γ −ηN , Z4 = γ −η1N (2.14)

with η, η1 being analytic functions of e and η = ae4 + O(e6), η1 = be2 + O(e4), a, b > 0
suitable constants, the limit

lim
N→∞

lim
K→∞

〈
ψx1 . . . ψxn

ψ̄y1 . . . ψ̄yn
Aµ1,z1 . . . Aµm,zm

〉
K,N

(2.15)

exists at non-coinciding points and verifies the Osterwalder–Schroeder axioms [OS].
By a chiral transformation the following axial ward identity at finite cut-off is obtained:

pµ
〈
j 5
µ,pψkψ̄k−p

〉
K,N

= γ 5〈ψk−pψ̄k−p〉K,N−
γ 5〈ψkψ̄k〉K,N + m

〈
j 5

pψkψ̄k−p
〉
K,N

+ αK,N(p, k)εµ,vipµ〈Aν,pψkψ̄k−p〉K,N

(2.16)

lim
N→∞

lim
K→∞

αK,N(p, k) = e

2π
+ Ae3 + O(e4) (2.17)

with A > 0 being a non-vanishing constant (see (4.8) below).
By combining the Schwinger–Dyson equation (2.11) with the WI (2.16) and its analogy

for the current at finite cut-off we obtain

〈ψkψ̄k〉K,N = B2,K,N (k) +
χN(k)

Z

−i� k
k2

− e2 [ā2 − a2]

2
χN(k)

(−i� k
k2

)

×
∫

dp
(2π)2

iv̂K(p)
γµpµ

p2
〈ψk−pψ̄k−p〉K,N (2.18)

and a−1
2 = 1 − e2

2π
− Ae4 + O(e6), ā−1

2 = 1 + e2

2π
− Ae4 + O(e6); again B2,K,N (k) is a term

depending on the integrated difference between the WI with or without cut-off, but in this case
it is not vanishing at all, but it holds

B2,K,N (k) = σχN(k)

(−i� k
k2

)
+ ρ〈ψkψ̄k〉 + HK,N(k) (2.19)

with ρ = Āe4 + O(e6), with Ā > 0, σ = O(e6) and limN→∞ limK→∞ HK,N(k) = 0.

2.4. Remarks.

(1) Note that, according to power counting, there are four marginal or relevant monomials
(namely ψ̄ψ, jµjµ,Aµjµ, ψ̄ �∂ψ), but all the ultraviolet divergences can be reabsorbed
in two bare parameters (Z,Z4) only, as a consequence of the Ward identities.
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(2) The anomaly non-renormalization is true if the bosonic propagator is given by (2.3). In
contrast, in the theory with bosonic propagator (2.4) the validity of the anomaly non-
renormalization depends on the order in which the cut-offs are removed. The anomaly is
not renormalized if the fermionic cut-off is removed first (see (2.10)), while the anomaly
has higher order corrections if the bosonic cut-off is removed first (see (2.17)). In the
purely fermionic model (2.6), the anomaly non-renormalization is found only starting from
a non-local current–current interaction, while if one starts from a local interaction higher
order corrections are found. As the anomaly non-renormalization has several important
physical applications, for instance the anomaly concellations in the electroweak model,
the above results suggest that regularizations have to be chosen properly in order to ensure
the validity of such a property.

(3) The same conditions ensuring the validity of the anomaly non-renormalization ensures the
validity of a closed equation for the two-point Schwinger function, in the limit in which
cut-offs are removed, which is equal to the one formally obtained by first removing the
cut-offs and then combining the WI with the Schwinger–Dyson equation (see (2.13)). In
contrast, if the bosonic cut-off is removed first the two-point function verifies a different
closed equation, as a consequence of (2.19).

(4) The above fact explains the apparent contradiction between the exact analysis of the
Thirring model and the functional integral approach. In the exact analysis one starts
assuming the validity of a certain closed equation, which is verified in the functional
integral approach, only starting from a non-local current–current interaction, and
performing the local limit after the removal of the fermionic cut-off. In contrast, if
one starts from a local interaction, the closed equation is different from the one postulated
in the exact approach.

3. Removal of cut-offs and construction of the theory

We consider for definiteness the massless case m = 0 and we set the fermionic external field
equal to zero φ = 0 (the inclusion of the mass and fermionic external field is straightforward).
We consider (2.4), (2.6) first assuming that the fermionic cut-off is larger than the bosonic one
N � K , and calling λ = e2/2 we write∫

PZ(dψ(�N)) exp

(
λ

∫
dx dyvK(x − y)

(
ψ̄(�N)

x γµψ(�N)
x )(ψ̄(�N)

y γµψ(�N)
y

)
+

∫
dxJµ,xψ̄

(�N)
x γµψ(�N)

x

)

≡
∫

PZ(dψ(�N)) eV
(N)(

√
Z1ψ

(�N),J ). (3.1)

We can represent the fermionic propagator ĝ(�N)(k) = −i�k
k2

χN (k)

Z
as

ĝ(�N)(k) = ĝ(�N−1)(k) + ĝ(N)(k), (3.2)

where

ĝ(N)(k) = 1

Z

−i� k
k2

f (N)(k), χN(k) = χN−1(k) + f (N)(k)

and f (N)(k) is a smooth function with support in 2N−1 � |k| � 2N+1. By the properties of
Grassman integrals (3.1) can be rewritten as∫

PZ(dψ(�N−1))

∫
PZ(dψ(N)) eV

(N)(ψ(�N−1)+ψ(N),J ) =
∫

PZ(dψ(�N−1)) eV
(N−1)(ψ(�N−1),J ),

(3.3)
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Figure 1. Graphical representation of H
(N−1)
2,0 and H

(N−1)
2,1 ; the dotted half-lines represent the

external fermionic fields and the wiggly half-line represents J .

Figure 2. An example of Feynman graph contributing to ET
N : the clusters of points P1, . . . , Ps

are represented as circles.

where PZ(dψ(N)) has the propagator g(N)(x) and V(N−1)(ψ(�N−1), J ) has the form (see
figure 1)

V(N−1)(ψ, J ) =
∑
n,m

n+m�0

H
(N−1)
2n,m (x, y; z)

m∏
i=1

Jzi

n∏
i=1

ψ(�N−1)
xi

ψ̄ (�N−1)
yi

, (3.4)

where H
(N−1)
2n,m are given by

H
(N−1)
2n,m (z; x, y) = 1

m!

1

2n!

[
m∏

i=1

∂

∂Jzi

] [
n∏

i=1

∂

∂ψ
(�N−1)
xi

∂

∂ψ̄
(�N−1)
yi

]

∞∑
k=1

1

k!
ET

N(V(N)(ψ(�N−1) + ψ(N), J ) . . .V(N)(ψ(�N−1) + ψ(N), J ))

∣∣∣∣
ψ(N)=J=0

(3.5)

and ET
N is the truncated expectation with respect to the propagator g(N)(x).

The truncated expectation is a linear operation defined starting from monomials in the
following way. If ψ̃(N)(P ) are monomials in the fields, that is, if P+

⋃
P− = P

ψ̃(N)(P ) =
∏

f ∈P−

ψ
(N)

x(f )

∏
f ∈P+

ψ̄
(N)

y(f ) (3.6)

the truncated expectation ET
N(ψ̃(P1) . . . ψ̃(Ps)) is given by the sum of the values (with the

relative sign) of all possible connected Feynman graphs, obtained representing the monomial
ψ̃(P ) as a number of oriented half-lines coming out from a cluster of points and contracting
them in all possible ways so that all the clusters are connected; to each line is associated a
propagator g(N) (see figure 2).

This implies that the kernels H
(N−1)
2n,m can be written as a sum over Feynman graphs as well,

and the presence of cut-offs makes each of them finite. However even if each Feynman graph,
if no J fields are present, is bounded by Ck|λ|k/k!, their number is O(k!2) so that each term
in (3.5) is bounded by Ck|λ|kk! from which convergence does not follow. Such k!-factorial
bounds are generally obtained either for bosonic or fermionic theories. On the other hand,
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Figure 3. Graphical representation of one term in (3.7); the propagators in T are represented
as lines while the fields corresponding to the propagators in the determinant are represented as
unpaired half-lines.

in the case of fermions, anticommutativity produces dramatic cancellations among Feynman
graphs (which are lost if the sum of graphs is simply bounded by the sum of their absolute
values) and the result is that a regularized fermionic perturbation series converges, see [C].

In order to exploit such cancellations it is convenient to use a different representation of
the truncated expectations (see figure 3) [GK] (for a tutorial derivation, see also [GM]).

ET
N(ψ̃(N)(P1), . . . , ψ̃

(N)(Ps)) =
∑
T

∏
l∈T

g(N)(xl − yl )

∫
dPT (t) det GN,T (t), (3.7)

where T is a set of lines forming an anchored tree graph between the clusters of points
x(i) ∪ y(i), that is T is a set of lines, which becomes a tree graph if one identifies all the points
in the same cluster. Moreover, t = {ti,i ′ ∈ [0, 1], 1 � i, i ′ � s}, dPT (t) is a probability
measure with support on a set of t such that ti,i ′ = ui · ui ′ for some family of vectors ui ∈ Rs

of unit norm. Finally Gh,T (t) is a
(∑s

i=1 |Pi |/2 − s + 1
) × (∑s

i=1 |Pi |/2 − s + 1
)

matrix,
whose elements are given by G

N,T
ij,i ′j ′ = ti,i ′g

(N)(xij − yi ′j ′) with
(
f −

ij , f +
i ′j ′

)
not belonging to

T
(
f ±

i ′j ′ ∈ P ±
j

)
.

Note that det GN,T (t) is a Gram determinant which can be bounded by, for a suitable
constant C

| det GN,T (t)| � C(
∑s

i=1 |Pi |/2−s+1)Nγ (
∑s

i=1 |Pi |/2−s+1)N (3.8)

and no factorials are present in the above bound; in contrast, if one expands the determinant
(obtaining essentially the Feynman graph expansion) and bounds each term with its modulus,
one gets essentially a similar bound times an extra factorial. Another important point is that
the sum over the trees T is bounded by Css!.

By bounding each term in the expansion (3.5) by (3.7), (3.8), it is not difficult to
see that the series in (3.5) is convergent for λ small enough. We can then integrate the
fields ψ(N−2), . . . , ψ(h) with respect to the fermionic integration P(ψ(k)),K � k � N with
propagator g(k)(x) verifying the bound, for any M (by integration by parts):

|g(k)(x)| � CM

1

Z

γ k

1 + (γ k|x|)M . (3.9)

Again V(k)(ψ(�k), J ) can be written as in (3.4) (with k replacing N − 1), and using the
analogous of (3.7), (3.8), the bound

∫
dr|g(h)(r)| � Cγ −h and that, for any M

|vK(x)| � CM

γ 2K

1 + (γ K |x|)M (3.10)
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+= +

Figure 4. Graphical representation of (3.13); the blobs represent H
(h)
n,m as in figure 1, the paired

wiggly lines represent vK , the paired line g(h,N).

we find, if ||f || = 1
L2

∫
dr|f (r)| and |λ| � ε, the following bound∥∥H(h)

n,m

∥∥ � Cεmax(0, n
2 −1)γ h(2− n

2 −m). (3.11)

(3.11) is called a power counting bound; it says that the kind of bound one expects from naive
dimensional considerations is valid also at a non-perturbative level. It is however not sufficient
for taking the limit N → ∞, as the scaling dimension 2− n

2 −m is non-negative; one have then
to improve the bound for n = 2,m = 0, 1 or n = 0,m = 2 or n = 4,m = 0 (in all other cases
the dimension is negative). Of course the improvement must be done somewhat respecting the
determinant structure in the truncated expectations, in order to avoid combinatorial problems.

We use the following property of truncated expectations

ET (ψ̃(P1 ∪ P2)ψ̃(P3) . . . ψ̃(Pn)) = ET (ψ̃(P1)ψ̃(P2) . . . ψ̃(Pn))

+
∑

K1 ,K2 ,K1/K2=0

K1∪K2=(3,...,n)={αi }
|K1 |+|K2 |
i=1

ET (ψ̃(P1)ψ̃(Pαi
) . . . ψ̃(Pα|K1 |)ET

× (
ψ̃(P2)ψ̃

(
Pα|K1 |+1

)
. . . ψ̃

(
Pα|K1 |+|K2 |

))
. (3.12)

Note that the number of terms in the sum in the rhs of (3.12) is bounded by Cn for a suitable
constant C. The above equation has a very simple meaning. The truncated expectation is
given by a sum of two kinds of graphs: the first is such that cutting the connection between
P1 and P2 the graph is still connected, and the second is such that is disconnected under such
operation.

From the analogous of (3.5), with ET
N replaced by ET

h+1,N with propagator g(h,N)(x − y) =∑N
k=h g(k)(x − y) and using (3.12) (see figure 4)

H
(h)
2,0 (x, y) =

∫
dy1λvK(x − y1)H

(h)
0,1 (y1)g

(h,N)(x − y2)H
(h)
2,0 (y2; y)

+ λ

∫
dy2vK(x − y1)g

(h,N)(x − y2)H
(h)
2,1 (y, y2; y1)

+ λδ(x − y)

∫
dy1vK(x − y1)H

(h)
0,1 (y1). (3.13)

In the massless case m = 0 the first and the third terms are vanishing; hence, using that
‖g(j)‖1 � C̃γ −j and ‖v‖∞ � Cγ 2K , we obtain the following bound

∥∥H
(h)
2,0

∥∥ � |λ| · ‖v‖∞ · ∥∥H
(h)
2,1

∥∥ ·
N∑

j=h

‖g(j)‖1 � C̃

1 − γ −1
C0|λ|γ hγ −2h+2K. (3.14)

Note that we have a gain O(γ −2(h−K)) with respect to the bound (3.11), due to the fact
that we are integrating over a fermionic instead of that over a bosonic line.

Similar arguments can be repeated for H
(h)
0,2 , which can be decomposed as in the following

picture.
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+ +

Figure 5. Decomposition of H
(h)
2,0 : the blobs represent H

(h)
n,m, the paired wiggly lines represent vK ,

the paired line g(h,N).

The second term in figure 5 is given by

λ

∫
dw du′ dz′ du dw′v(u′ − z′)g(h,N)(w − u)g(h,N)(w − u′)g(h,N)(u′ − w′)H (h)

2,2 (w′, u; z, z′).

(3.15)

It is convenient to decompose the three propagators into scales,
∑N

j,i,i ′=h g(j)g(i)g(i ′) and then,
for any realization of j, i, i ′, to take the ‖·‖1 norm on the two propagators on the higher scales,
and the ‖·‖∞ norm on the propagator with the lowest one. In this way we can bound (3.15),
using (3.11), by

|λ||v|∞ · ∥∥H
(h)

2;2
∥∥3!

N∑
j=h

j∑
i=h

i∑
i ′=h

‖g(j)‖1‖g(i)‖1‖g(i ′)‖∞ � C1|λ|γ 2Kγ −h

N∑
j=h

j∑
i=h

i∑
i ′=h

γ −j γ −iγ i ′

� C2|λ|γ 2Kγ −h

N∑
j=h

γ −j (j − h) � C2|λ|γ 2Kγ −h

N∑
j=h

γ −j γ (j−h)/2

� C4|λ|γ −2(h−K). (3.16)

A similar bound is found for the third term in figure 5; regarding the first term, we can rewrite
it as∫

dx dz [g(h,N)(z − x)]2λvK(x − z̄)H (h)
0,2 (z̄, y) =

∫
dx dz λvK(z̄−z)[g(h,N)(x−z)]2H

(h)
0,2 (z̄, y)

+
∫

dx dz [vK(z̄ − x) − vK(z̄ − z)][g(h,N)(x − z)]2λvK(z − z′)H (h)
0,2 (z̄, y)

(3.17)

and using that ∫
dx [g(h,N)(x − z)]2 = 0 (3.18)

we see that the first term in (3.17) is vanishing; on the other hand the difference
[vK(z̄ − x) − vK(z̄ − z)] produces an extra factor γ K−h in the bounds.

As similar analysis can be repeated also for H4,0,H2,1 and in all cases an extra factor
γ −h+K , with respect to the dimensional bounds, is obtained, so that we can integrate
the fields ψ(N), ψ(N−1), . . . , ψ(K) (the ultraviolet regime) obtaining a sequence of kernels
V(N), . . . ,V(K) whose kernels are well defined in the N → ∞ limit.

The integration of the fields with scale K − 1,K − 2, . . . (the infrared regime) has to be
done in a different way (γ K−h � 1 in such case), defined iteratively in the following way.
Assume that we have integrate all fields up to scale h < K obtaining∫

PZh
(dψ(�h)) e−V(h)(

√
Zhψ

(�h),J ), (3.19)
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where PZh
(dψ(�h)) has a propagator similar to (2.2) with χN replaced by χh, Z replaced by

Zh and Vh(ψ) of the form (3.4).
We write V(h) as

V(h)(
√

Zhψ
(�h), J ) = LV(h)(

√
Zhψ

(�h), J ) + RV(h)(
√

Zhψ
(�h), J ), (3.20)

where R = 1 − L and L is a linear operation acting on H(h)
n,m in the following way:

LH
(h)
2,1 (k) = H

(h)
2,1 (0) H

(h)
4,0 (k) = H

(h)
4,0 (0)

LH
(h)
2,0 (k) = H

(h)
2,0 (0) + kµ∂µH

(h)
2,0 (0)

(3.21)

an by parity H
(h)
2,0 (0) = 0. We can include the quadratic part in the free fermionic interaction

obtaining∫
PZh−1(dψ(�h−1))

∫
PZh−1(dψ(h)) exp

(
−λhZ

2
h−1

∫
dx

(
ψ(�h)

x γµψ(�h)
x

)2

+ Z
(1)
h−1

∫
dxJµ,xψ

(�h)
x γµψ(�h)

x + RV(h)(
√

Zhψ
(�h), J )

)
, (3.22)

and integrating the field ψh we return to an expression like (3.19) and the procedure can
be iterated. The result of this procedure is that the n-point functions are expressed by
expansions in the effective couplings λh, . . . , λK, λ which are convergent if suph�j�N |λh| is
small enough. The extraction of the local part produces an improvement in the size of the
kernels, producing derivatives applied on the external fields, giving an extra γ h, and factors
(x−y), if x, y are the coordinate of the external fields; this last factor can be bounded using that
γ h

∫
dz|z||g(h)(z)| � Cγ −h or

∫
dz|z||v(z)| � Cγ −K � Cγ −h (this last inequality explains

why the procedure used in (3.19) cannot be used for scales � K). The major problem is

to show that λh and Z
(1)
h

Zh
remain close to their initial value. This was proved in [BM], by

combining ward identities and Schwinger–Dyson equations at each integration step, and the
consequence of this analysis is the relations

λh = λ + O(λ2), Zh = γ −ηh(1 + O(λ)),
Z

(1)
h

Zh

= (1 + O(λ)), (3.23)

As Z = ZN(1 + O(λ)), with the choice (2.7) we can remove first the fermionic cut-off
N → ∞ and then the bosonic one K → ∞. A similar analysis can be repeated in the case of
the propagator (2.4) with fixed K.

Let us discuss now shortly what happens when K � N ; now there is no gain in integrating
over a fermionic instead of a bosonic line, as γ K−h � 1 for any h; the integration of the scales
N,N − 1, . . . is done following for all the momentum scales the integration procedure (3.19),
as in such a case

∫
dz|z||v(z)| � Cγ −K � Cγ −h for any h. The result is that, by choosing the

bare parameters as in (3.23) with h = N , the limit N → ∞ can be performed after the limit
K → ∞.

4. Renormalization or non-renormalization of the anomalies

Let us consider for simplicity again the case of massless fermions m = 0; we consider (2.4),
(2.6) first assuming that the fermionic cut-off is larger than the bosonic one N � K so that,
performing in (2.6) the local phase transformation ψx → eiα5

xγ 5
ψx and ψ̄x → ψ̄x eiα5

xγ 5
we

find

pµ

〈
j 5
µ,pψkψ̄k−p

〉
K,N

= γ 5〈ψk−pψ̄k−p〉K,N − γ 5〈ψkψ̄k〉K,N +
〈
δj 5

pψkψ̄k−p
〉
K,N

, (4.1)
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where j
µ,5
p = Z

∫
dk′

(2π)2 ψ̄k′γµγ5ψk′−p and δj 5
p = Z

∫
dk′

(2π)2 Cµ(k′, k′ − p)ψ̄k′γµγ5ψk′−p with

Cµ(k−, k+) = (
χ−1

N (k−) − 1
)
k−,µ − (

χ−1
N (k+) − 1

)
k+,µ. (4.2)

The presence of the last term in (4.1) is due to the presence of the momentum fermionic
cut-off which breaks local invariance. An analogous WI for the current is found performing
the transformation ψ̄x → eiαxψx and ψ̄x → ψ̄x e−iαx . Note that

ev̂K(p)
〈
j 5

p,µψkψ̄k−p
〉 = iεµ,ν〈Aν,pψkψ̄k−p〉. (4.3)

Writing ψx = (ψx,+, ψx,−) and introducing an index ω = ± denoting the chirality of the
fermions we can write〈
δj 5

pψkψ̄k−p
〉
K,N

= λ

πe
εµ,v ipµ〈Aν,pψkψ̄k−p〉K,N +

∑
ω=±

ωRω,K,N(k, p), (4.4)

where

Rω,K,N(k, p) = ∂3

∂J̄p∂φk∂φ̄k−p
Wω,K,N(J̄ , φ)|0,0 (4.5)

with

eWω,K,N (J,φ) =
∫

PZ(dψ(�N)) exp

(
λ(Z)2

∫
dk1

(2π)2

dk2

(2π)2
vK(p)

(
ψ̄k1γµψk1−p

)(
ψ̄k2γµψk2+p

))

× exp

(∫
dk

(2π)2
[ψ̄k φk + ψk φ̄k]

)

× exp

(∫
dp

(2π)2

dk′

(2π)2
J̄pZ

[
Cω(k′, k′ − p)ψ+

ω,k′ψω,k′−p

− ν−D−ω(p)v̂K(p)ψ+
−ω,k′ψ−ω,k′−p

]
,

)
(4.6)

where

Dω(p) = −ip0 + ωp (4.7)

ν− = λ
π

and

Cω(k, k − p) = Dω(k − p)
(
χ−1

N (k − p) − 1
) − (

χ−1
N (k) − 1

)
Dω(k). (4.8)

Note that the functional integral (4.6) is similar to (3.1), the only difference being that the term∫ dp
(2π)2

dk′
(2π)2 J̄pZψ+

ω,k′ψω,k′−p in (3.1) is replaced by the exponent in the second line of (4.6),
which is given by the sum of the two terms one of which is non-local. We can integrate (4.6)
following an iterative procedure similar to that described in section 3, obtaining a sequence of
Ṽ(h)(ψ, J̄ ) (the analogous of V(h)(ψ, J̄ ) for (3.1)) of the form

Ṽ(h)(ψ, J̄ ) =
∑
n,m

n+m�0

G
(h)
2n,m(z; x, y)

m∏
i=1

J̄zi

n∏
i=1

ψ(�h)
xi

ψ̄ (�h)
yi

. (4.9)

As in section 3, we need an improvement with respect to the dimensional bounds in the case
of G

(h)
2,1 which has a vanishing scaling dimension. As there are two terms linear in J̄ in the

exponent (4.6), we can write (see figure 6)

G
(h)
2,1 = G

(h)
a,2,1 + G

(h)
b,2,1, (4.10)
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= +

Figure 6. Graphical representation of (4.10); the wiggly line represents J̄ .

+ +

Figure 7. Decomposition for G
(h)
a,2,1; the gray blobs represent H

(h)
n,m, the paired lines the fermionic

propagators and the wiggly lines the interactions.

where

G
(h)
a,2,1 = 1

2

∂

∂ψ
(�h)
x

∂

∂ψ̄
(�h)
y

∞∑
k=1

1

(k − 1)!
ET

h+1,N

(
Z

[∫
dp

(2π)2

dk′

(2π)2
Cω(k′, k′ − p)ψ+

ω,k′ψω,k′−p

]
V(N) . . .V(N)

) ∣∣∣∣
ψ(�h)=0

(4.11)

and

G
(h)
a,2,1 = 1

2

∂

∂ψ
(�h)
x

∂

∂ψ̄
(�h)
y

∞∑
k=1

1

(k − 1)!
ET

h+1,N

(
Z

[∫
dp

(2π)2
ν−D−ω(p)v̂K(p)ψ+

−ω,k′ψ−ω,k′−p

]
V(N) . . .V(N)

) ∣∣∣∣
ψ(�h)=0

.

(4.12)

When the two fields appearing in
∫ dp

(2π)2 J̄pZ
dk′

(2π)2 Cω(k′, k′ − p)ψ+
ω,k′ψω,k′−p are

contracted one get

�(h,k)(k+, k−) = g(h)(k+)Cω(k+, k−)g(k)(k−) = (k+ − k−) · Sh,k(k+, k−) (4.13)

with the important property that

�h,k(k+, k−) = 0 h, k < N (4.14)

and

|SN,j (z − x, z − y)| � CM

γ N

1 + [γ N |z − x|]M
γ j

1 + [γ j |z − y|]M . (4.15)

From (4.14) we see that at least one of the fields in
∫ dp

(2π)2 J̄pZ
dk′

(2π)2 Cω(k′, k′ −p)ψ+
ω,k′ψ

−
ω,k′−p

must be contracted at scale N.
We can decompose G

(h)
a,2,1 as explained in figure 7.

Regarding the second term, given by

N∑
i,j=h

∫
du du′ dw dw′S(i,j)(z; u, w)g(u − u′)v(u − w′)H (h)

1,4 (w′; u′, w, x, y) (4.16)
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we can proceed exactly as for (3.16), the main difference being that, from (4.13), either i or j

has to be N, so that (4.16) is bounded by

C1|λ|γ 2Kγ −h

N∑
i=h

i∑
i ′=h

γ −Nγ −iγ i ′ � C2|λ|γ 2Kγ −h−N(N − h) � C3|λ|γ −2(h−K)γ −(1/2)(N−h).

(4.17)

A similar bound holds for the third term in figure 7; regarding the first term we can perform
the analogous of the decomposition in (3.17) but now the fermionic bubble is not vanishing;
such term is however exactly cancelled by G

(h)
b,2,1 provided that ν− is chosen equal to

ν− = 4λ

∫
dk

(2π)2

Cω,N(k, k − p)

D−ω(p)
g(�N)

ω (k)g(�N)
ω (k − p)

∣∣∣∣
p=0

= −λ

∫
dk

(2π)2

k0

|k|χ
′
0(|k|)D−1

ω (k) = λ

π

∫ ∞

0
dρχ ′

0(ρ) = λ

π
.

(4.18)

The conclusion is that, for k � K ,∥∥G
(k)
2,1

∥∥ � C|λ|γ 1
2 (k−N) (4.19)

and for n � 4 ∥∥G
(k)
n,1

∥∥ � C|λ|max(0, n
2 −1)γ k(1− n

2 )γ
1
2 (k−N). (4.20)

The consequence is that Rω,K,N(k, p) verifies the same bound as 〈Apψkψ̄k−p〉 time an extra
factor γ

1
2 (hk−N), if hk is the scale of k, so that

lim
N→∞

Rω,K,N(k, p) = 0. (4.21)

A similar analysis can be repeated in the case of propagator (2.4) with fixed K. Note that the
result of such an analysis is the anomaly is not renormalized by higher order corrections, and
such a conclusion is obtained by completely avoiding any cancellation argument based on
Feynman graph expansion, so that it is non-perturbative and perfectly rigorous.

Let us discuss now shortly what happens when K � N still in the case (2.4), (2.6);
in such a case there is no reason for which the contribution coming from the second and
third addends of figure 7 should be small. Indeed we can proceed as in (3.19) and after the
integration of the scales N,N − 1, . . . , h we arrive at (setting again φ = 0 for definiteness),
if V(h)(

√
Zhψ

(�h), J ) is the same as in (3.19)∫
PZh

(dψ(�h)) exp(−V(h)(
√

Zhψ
(�h), 0) + RBh(ψ(�h), J̄ ))

× exp

( ∫
dp

(2π)2

dk′

(2π)2
J̄pZh

[
Cω(k′, k′ − p)ψ

+(�h)

ω,k′ ψ
(�h)

ω,k′−p

− ν−,hD−ω(p)ψ
+(�h)

−ω,k′ ψ
(�h)

−ω,k′−p − ν+,hDω(p)ψ
+(�h)

ω,k′ ψ
(�h)

ω,k′−p

])
, (4.22)

where Bh(ψ(�h), J̄ ) is the sum of monomial with at least a J̄ -field and ν±,h = O(γ
1
2 (h−N)λ)

provided that we choose

ν− = λ

π
+ O(λ2) ν+ = Aλ2 + O(λ3) (4.23)

with

A = 4
∫

dk
(2π)2

[
u0(|k|)χ0(|k|)

|k|4 − χ ′
0(|k|)
2|k|3

] ∫
dk′′

(2π)2
g

(�N)
−ω (k′′)g(�N)

−ω (k − k′′)D2
−ω(k) > 0.

(4.24)
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From the fact that ν±,h = O(γ
1
2 (h−N)λ) it follows that (4.21) holds also in this case. Note

that (4.23) and (4.24) imply that in this case the anomaly is renormalized by higher order
corrections.

5. Schwinger–Dyson equation

In this section we discuss the equation for the two-point Schwinger function one obtains
combining the Schwinger–Dyson equation (2.12) with the WI. Again we start from the case
(2.4), (2.6) assuming that the fermionic cut-off is larger than the bosonic one N � K so that
we find (2.12) with

B1,K,N (k) = χN(k)

Dω(k)

∑
ε=±

a1 − εā1

2

∫
dp

(2π)2

v̂K(p)

D−ω(p)
Rε,ω,K,N (k, p), (5.1)

where a−1
1 = 1 − λ

π
, ā−1

1 = 1 + λ
π

and Rε,ω,K,N (k, p) are the corrections (4.5) to the WI. We
have seen that such corrections vanish removing cut-offs and at fixed momenta; however in
(5.1) the corrections are integrated up to the cut-off scale, precisely where such corrections
are not small, so that one is not legitimate to exchange the limit with the integrals. In order to
bound (5.1) it is convenient to write it as

B1,K,N (k) = χN(k)

Dω(k)

∑
ε=±

a1 − εā1

2

∂2

∂hk,ω∂φ+
k,ω

Wε,ω,K,N

∣∣∣∣
h=φ=0

, (5.2)

where

eWε,ω,K,N (h,φ) =
∫

PZ(dψ(�N))

× exp

(
λZ2

∫
dk1

(2π)2

dk2

(2π)2

dp
(2π)2

vK(p)
(
ψ̄

(�N)

k1
γµψ

(�N)

k1−p

)(
ψ̄

(�N)

k2
γµψ

(�N)

k2+p

))

× exp

(
T0(ψ

(�N), h) + T1(ψ
(�N), h) +

∫
dk

(2π)2
φ

+(�N)

k,ω ψk,ω

)
, (5.3)

where

T0 = Z

∫
dp

(2π)2

dk′

(2π)2
vK(p)hk,ωψk−p,ω

Cεω(k′, k′ − p)

D−ω(p)
ψ+

εω,k′ψεω,k′−p

T1 = Zν−
∫

dp
(2π)2

dk′

(2π)2
vK(p)hk,ωψk−p,ω

D−εω(p)

D−ω(p)
ψ+

−εω,k′ψ−εω,k′−p.

(5.4)

From (5.2) we see that B1,K,N (k) is very similar to the two-point Schwinger function; the
difference is that there is a new interaction T0 + T1 and that the external propagator is
necessarily connected to this interaction.

Again the integration of the ultraviolet scales is done as in section 3, and after the
integration of N,N − 1, . . . , h + 1 the exponent in the functional integration is

V̂(h)(ψ, h) = V(h)(ψ, 0) +
∑
n,m

n+m>0

D
(h)
m,2n−m(x, y, z)

[
n∏

i=1

ψ(�h)
xi

] [
n−m∏
i=1

ψ̄(�h)
yi

] [
m∏

i=1

hzi

]
. (5.5)

We proceed as in section 3 analyzing in more detail the kernels D
(h)
1,1 and D

(h)
1,3 which have a non-

negative dimension. There are several possible contributions. In the truncated expectations
contributing to D

(h)
1,1 and D

(h)
1,3 there is necessarily a T0 or T1; we decompose D

(h)
1,2n−1 in an

analogous way as in (4.10) writing, for n = 2, 4,

D
(h)
1,2n−1 = D

α(h)
1,2n−1 + D

β(h)

1,2n−1, (5.6)
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Figure 8. The contribution to D
α(h)
3,1 obtained from T0; the symbols are as in figure 6.

Figure 9. Structure of D
β(h)

3,1 and D
β(h)

1,1 are the symbols as in figure 6.

where in D
α(h)
1,2n−1 are the terms such that the field ψk−p,ω appearing in (5.4) is an external field

(see figure 8), while in D
β(h)

1,2n−1 the field ψk−p,ω is contracted. One immediately recognizes
that

D
α(h)
1,3 = G

(h)
2,1, (5.7)

where G(h)
n,m are the kernels appearing in (4.11), so that, from (4.20), for h � K ,∥∥D

α(h)
1,3

∥∥ � C|λ|γ 1
2 (h−N). (5.8)

On the other hand D
β(h)

n,1 , n = 1, 3, has the structure shown in the following picture (in
figure 9).

We can write

D
β(h)

1,3 (x1, x2, x3, x4) =
∫

λvK(x1 − z1)g
(h,N)(x1 − z2)G

(h)
4,1(x1, x2, x3, z2; z1) (5.9)

and by (4.20), for h � K

∥∥D
β(h)

1,3

∥∥ � C1|λ|‖v‖∞
∥∥G

(h)
4,1

∥∥ ·
N∑

j=h

‖g(j)‖1 � C2|λ|γ 2Kγ −2hγ
1
2 (h−N). (5.10)

We can proceed in the same way for D
β(h)

1,1 writing

D
β(h)

1,1 (x1, x2) =
∫

λvK(x1 − z1)g
(h,N)(x1 − z2)G

(h)
4,1(x2, z2; z1) (5.11)

and from (4.19)

∥∥D
β(h)

1,1

∥∥ � C1|λ|‖v‖∞
∥∥G

(h)
1,1

∥∥ ·
N∑

j=h

‖g(j)‖1 � C2|λ|γ 2Kγ −hγ
1
2 (h−N). (5.12)

From the above bounds it follows that the bound for B1,K,N (k) is similar to that for the two-
point Schwinger function up to an extra factor γ

1
2 (hk−N), if hk is the scale of k; hence it follows

that B1,K,N (k) → 0 at k and K fixed, as N → ∞.
In contrast in the case (2.4), (2.6), assuming that the bosonic cut-off is larger than the

fermionic one K > N , there is no reason for which the terms in figure 9 vanish at N → ∞, at
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h fixed; indeed their local parts λ̃k, z̃k have a non-trivial flow verifying |λ̃h −αελh| � Cλ2 and
|z̃h−αεzh| � Cλ2, with α− = O(λ) and α+ = O(1), so that, by (3.23), they are non-vanishing
and consequently the limit of B2,K,N as N → ∞,K → ∞ is also non-vanishing in this case,
see [BFM].
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